一、華南理工大學(xué)陸繼東團(tuán)隊(duì)風(fēng)采
華南理工大學(xué)電力學(xué)院的LIBS研究團(tuán)隊(duì)由長(zhǎng)江學(xué)者陸繼東教授領(lǐng)銜,始創(chuàng)于2002年,目前有教授1名,副教授2名,在讀博士研究生4名,碩士研究生12名,已培養(yǎng)博碩士20余名。
本團(tuán)隊(duì)以能源清潔轉(zhuǎn)化與系統(tǒng)優(yōu)化過(guò)程中關(guān)鍵參數(shù)在線監(jiān)測(cè)的迫切需求為依托,研究基于LIBS原理的新型傳感技術(shù),重點(diǎn)研發(fā)煤質(zhì)、飛灰含碳量、煙氣重金屬等在線傳感系統(tǒng)。同時(shí),利用LIBS技術(shù)深入探究氣體燃料、煤粉和生物質(zhì)的燃燒過(guò)程及其火焰特性,旨在發(fā)展新型的燃燒診斷方法,深入揭示不同燃料的燃燒機(jī)理。
華南理工大學(xué)陸繼東團(tuán)隊(duì)合影
二、華南理工大學(xué)陸繼東團(tuán)隊(duì)LIBS相關(guān)研究成果及研究最新進(jìn)展
1、團(tuán)隊(duì)近年來(lái)取得的主要研究成果,包括:儀器設(shè)備研發(fā)成果、軟件算法研究成果等;
1.1 飛灰含碳量測(cè)量
建立了利用空氣組分光譜修正顆粒效應(yīng)的模型,提高了LIBS測(cè)量飛灰含碳量時(shí)對(duì)粒徑波動(dòng)的適應(yīng)能力;從測(cè)量參數(shù)深度優(yōu)化和模型修正兩個(gè)方面建立了理論和實(shí)驗(yàn)相結(jié)合的C-Fe譜線干擾修正模型,顯著提高了飛灰含碳量的測(cè)量精確度;研發(fā)了便攜式飛灰含碳量測(cè)量系統(tǒng)(圖1),并在燃煤電廠進(jìn)行現(xiàn)場(chǎng)實(shí)測(cè),驗(yàn)證了可用性。
圖1 便攜式測(cè)量系統(tǒng)現(xiàn)場(chǎng)測(cè)試
1.2 煤質(zhì)分析
提出了煤粉顆粒流直接測(cè)量的模式,極大地簡(jiǎn)化了測(cè)量系統(tǒng)結(jié)構(gòu),并提出了基于特征峰SD值法的有效光譜甄別方法,有效提高了顆粒流直接測(cè)量的可靠性;采用神經(jīng)網(wǎng)絡(luò)方法建立了基于物理分析的熱值、工業(yè)分析、碳含量的定量模型,解決了非線性問(wèn)題,部分指標(biāo)優(yōu)于中子法測(cè)量性能的國(guó)標(biāo)要求;以結(jié)構(gòu)簡(jiǎn)化、分析專業(yè)、操作方便為理念,研發(fā)了煤質(zhì)快速分析儀(圖2),通過(guò)實(shí)測(cè)驗(yàn)證了該系統(tǒng)設(shè)計(jì)的可行性和可靠性。
圖2 煤質(zhì)快速分析儀
2、團(tuán)隊(duì)最新發(fā)布研究論文的簡(jiǎn)單介紹
近兩年來(lái),本團(tuán)隊(duì)圍繞受熱面金屬材料的失效預(yù)測(cè)、煤粉/飛灰顆粒流直接測(cè)量、PF-SIBS測(cè)量方法、預(yù)混火焰燃燒診斷等方面開展了較系統(tǒng)的研究,取得了一系列研究進(jìn)展,并發(fā)表了以下研究論文:
[1] Huang J, Dong M, Lu S, et al. Estimation of the mechanical properties of steel via LIBS combined with canonical correlation analysis (CCA) and support vector regression (SVR)[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 720-729.
[2] Lu S, Dong M, Huang J, et al. Estimation of the aging grade of T91 steel by laser-induced breakdown spectroscopy coupled with support vector machines[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 140: 35-43.
[3] Yao S, Xu J, Zhang L, et al. Optimizing critical parameters for the directly measurement of particle flow with PF-SIBS[J]. Scientific reports, 2018, 8(1): 1868.
[4] Li W, Lu J, Dong M, et al. Quantitative Analysis of Calorific Value of Coal Based on Spectral Preprocessing by Laser-Induced Breakdown Spectroscopy (LIBS)[J]. Energy & Fuels, 2017, 32(1): 24-32.
[5] Tian Z, Dong M, Li S, et al. Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 136: 8-15.
[6] Pan G, Dong M, Yu J, et al. Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 131: 26-31.
[7] Shunchun Yao, Jingbo Zhao, Jialong Xu, Zhimin Lu, Jidong Lu. Optimizing the binder percentage to reduce the matrix effects for the LIBS analysis of carbon in coal [J]. Journal of Analytical Atomic Spectrometry, 2017, 32(4): 766-772.
[8] Lu Zhimin, Mo Juehui, Yao Shunchun, Zhao Jingbo, Lu Jidong. Rapid Determination of Gross Calorific Value of Coal using LIBS Coupled with Artificial Neural Networks (ANN) and Genetic Algorithm (GA). Energy & Fuels, 2017, 31(4): 3849-3855.
[9] Shunchun Yao, Jialong Xu, Jingbo Zhao, Kaijie Bai, Jidong Lu, Zhiming Lu. Characterization of Fly Ash Laser-Induced Plasma for Improving the On-line Measurement of Unburned Carbon in Gas?Solid Flow. Energy & Fuels, 2017, 31(5): 4681-4686.
[10] Yao S, Zhang L, Xu J, et al. Data processing method for the measurement of unburned carbon in fly ash by PF-SIBS[J]. Energy & Fuels, 2017, 31(11): 12093-12099.